Copied to
clipboard

G = C22×C3⋊Dic3order 144 = 24·32

Direct product of C22 and C3⋊Dic3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: C22×C3⋊Dic3, C627C4, C62.35C22, (C2×C6)⋊5Dic3, C62(C2×Dic3), (C2×C6).40D6, (C2×C62).5C2, C328(C22×C4), C23.3(C3⋊S3), (C22×C6).11S3, C6.38(C22×S3), (C3×C6).37C23, C32(C22×Dic3), (C3×C6)⋊7(C2×C4), C2.2(C22×C3⋊S3), C22.11(C2×C3⋊S3), SmallGroup(144,176)

Series: Derived Chief Lower central Upper central

C1C32 — C22×C3⋊Dic3
C1C3C32C3×C6C3⋊Dic3C2×C3⋊Dic3 — C22×C3⋊Dic3
C32 — C22×C3⋊Dic3
C1C23

Generators and relations for C22×C3⋊Dic3
 G = < a,b,c,d,e | a2=b2=c3=d6=1, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d-1 >

Subgroups: 338 in 162 conjugacy classes, 107 normal (7 characteristic)
C1, C2, C2, C3, C4, C22, C6, C2×C4, C23, C32, Dic3, C2×C6, C22×C4, C3×C6, C3×C6, C2×Dic3, C22×C6, C3⋊Dic3, C62, C22×Dic3, C2×C3⋊Dic3, C2×C62, C22×C3⋊Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C3⋊S3, C2×Dic3, C22×S3, C3⋊Dic3, C2×C3⋊S3, C22×Dic3, C2×C3⋊Dic3, C22×C3⋊S3, C22×C3⋊Dic3

Smallest permutation representation of C22×C3⋊Dic3
Regular action on 144 points
Generators in S144
(1 66)(2 61)(3 62)(4 63)(5 64)(6 65)(7 117)(8 118)(9 119)(10 120)(11 115)(12 116)(13 111)(14 112)(15 113)(16 114)(17 109)(18 110)(19 58)(20 59)(21 60)(22 55)(23 56)(24 57)(25 53)(26 54)(27 49)(28 50)(29 51)(30 52)(31 70)(32 71)(33 72)(34 67)(35 68)(36 69)(37 73)(38 74)(39 75)(40 76)(41 77)(42 78)(43 79)(44 80)(45 81)(46 82)(47 83)(48 84)(85 124)(86 125)(87 126)(88 121)(89 122)(90 123)(91 130)(92 131)(93 132)(94 127)(95 128)(96 129)(97 136)(98 137)(99 138)(100 133)(101 134)(102 135)(103 142)(104 143)(105 144)(106 139)(107 140)(108 141)
(1 45)(2 46)(3 47)(4 48)(5 43)(6 44)(7 138)(8 133)(9 134)(10 135)(11 136)(12 137)(13 132)(14 127)(15 128)(16 129)(17 130)(18 131)(19 37)(20 38)(21 39)(22 40)(23 41)(24 42)(25 32)(26 33)(27 34)(28 35)(29 36)(30 31)(49 67)(50 68)(51 69)(52 70)(53 71)(54 72)(55 76)(56 77)(57 78)(58 73)(59 74)(60 75)(61 82)(62 83)(63 84)(64 79)(65 80)(66 81)(85 103)(86 104)(87 105)(88 106)(89 107)(90 108)(91 109)(92 110)(93 111)(94 112)(95 113)(96 114)(97 115)(98 116)(99 117)(100 118)(101 119)(102 120)(121 139)(122 140)(123 141)(124 142)(125 143)(126 144)
(1 23 26)(2 24 27)(3 19 28)(4 20 29)(5 21 30)(6 22 25)(7 16 141)(8 17 142)(9 18 143)(10 13 144)(11 14 139)(12 15 140)(31 43 39)(32 44 40)(33 45 41)(34 46 42)(35 47 37)(36 48 38)(49 61 57)(50 62 58)(51 63 59)(52 64 60)(53 65 55)(54 66 56)(67 82 78)(68 83 73)(69 84 74)(70 79 75)(71 80 76)(72 81 77)(85 100 91)(86 101 92)(87 102 93)(88 97 94)(89 98 95)(90 99 96)(103 118 109)(104 119 110)(105 120 111)(106 115 112)(107 116 113)(108 117 114)(121 136 127)(122 137 128)(123 138 129)(124 133 130)(125 134 131)(126 135 132)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 121 4 124)(2 126 5 123)(3 125 6 122)(7 34 10 31)(8 33 11 36)(9 32 12 35)(13 39 16 42)(14 38 17 41)(15 37 18 40)(19 131 22 128)(20 130 23 127)(21 129 24 132)(25 137 28 134)(26 136 29 133)(27 135 30 138)(43 141 46 144)(44 140 47 143)(45 139 48 142)(49 102 52 99)(50 101 53 98)(51 100 54 97)(55 95 58 92)(56 94 59 91)(57 93 60 96)(61 87 64 90)(62 86 65 89)(63 85 66 88)(67 120 70 117)(68 119 71 116)(69 118 72 115)(73 110 76 113)(74 109 77 112)(75 114 78 111)(79 108 82 105)(80 107 83 104)(81 106 84 103)

G:=sub<Sym(144)| (1,66)(2,61)(3,62)(4,63)(5,64)(6,65)(7,117)(8,118)(9,119)(10,120)(11,115)(12,116)(13,111)(14,112)(15,113)(16,114)(17,109)(18,110)(19,58)(20,59)(21,60)(22,55)(23,56)(24,57)(25,53)(26,54)(27,49)(28,50)(29,51)(30,52)(31,70)(32,71)(33,72)(34,67)(35,68)(36,69)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,82)(47,83)(48,84)(85,124)(86,125)(87,126)(88,121)(89,122)(90,123)(91,130)(92,131)(93,132)(94,127)(95,128)(96,129)(97,136)(98,137)(99,138)(100,133)(101,134)(102,135)(103,142)(104,143)(105,144)(106,139)(107,140)(108,141), (1,45)(2,46)(3,47)(4,48)(5,43)(6,44)(7,138)(8,133)(9,134)(10,135)(11,136)(12,137)(13,132)(14,127)(15,128)(16,129)(17,130)(18,131)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,32)(26,33)(27,34)(28,35)(29,36)(30,31)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,76)(56,77)(57,78)(58,73)(59,74)(60,75)(61,82)(62,83)(63,84)(64,79)(65,80)(66,81)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114)(97,115)(98,116)(99,117)(100,118)(101,119)(102,120)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,23,26)(2,24,27)(3,19,28)(4,20,29)(5,21,30)(6,22,25)(7,16,141)(8,17,142)(9,18,143)(10,13,144)(11,14,139)(12,15,140)(31,43,39)(32,44,40)(33,45,41)(34,46,42)(35,47,37)(36,48,38)(49,61,57)(50,62,58)(51,63,59)(52,64,60)(53,65,55)(54,66,56)(67,82,78)(68,83,73)(69,84,74)(70,79,75)(71,80,76)(72,81,77)(85,100,91)(86,101,92)(87,102,93)(88,97,94)(89,98,95)(90,99,96)(103,118,109)(104,119,110)(105,120,111)(106,115,112)(107,116,113)(108,117,114)(121,136,127)(122,137,128)(123,138,129)(124,133,130)(125,134,131)(126,135,132), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,121,4,124)(2,126,5,123)(3,125,6,122)(7,34,10,31)(8,33,11,36)(9,32,12,35)(13,39,16,42)(14,38,17,41)(15,37,18,40)(19,131,22,128)(20,130,23,127)(21,129,24,132)(25,137,28,134)(26,136,29,133)(27,135,30,138)(43,141,46,144)(44,140,47,143)(45,139,48,142)(49,102,52,99)(50,101,53,98)(51,100,54,97)(55,95,58,92)(56,94,59,91)(57,93,60,96)(61,87,64,90)(62,86,65,89)(63,85,66,88)(67,120,70,117)(68,119,71,116)(69,118,72,115)(73,110,76,113)(74,109,77,112)(75,114,78,111)(79,108,82,105)(80,107,83,104)(81,106,84,103)>;

G:=Group( (1,66)(2,61)(3,62)(4,63)(5,64)(6,65)(7,117)(8,118)(9,119)(10,120)(11,115)(12,116)(13,111)(14,112)(15,113)(16,114)(17,109)(18,110)(19,58)(20,59)(21,60)(22,55)(23,56)(24,57)(25,53)(26,54)(27,49)(28,50)(29,51)(30,52)(31,70)(32,71)(33,72)(34,67)(35,68)(36,69)(37,73)(38,74)(39,75)(40,76)(41,77)(42,78)(43,79)(44,80)(45,81)(46,82)(47,83)(48,84)(85,124)(86,125)(87,126)(88,121)(89,122)(90,123)(91,130)(92,131)(93,132)(94,127)(95,128)(96,129)(97,136)(98,137)(99,138)(100,133)(101,134)(102,135)(103,142)(104,143)(105,144)(106,139)(107,140)(108,141), (1,45)(2,46)(3,47)(4,48)(5,43)(6,44)(7,138)(8,133)(9,134)(10,135)(11,136)(12,137)(13,132)(14,127)(15,128)(16,129)(17,130)(18,131)(19,37)(20,38)(21,39)(22,40)(23,41)(24,42)(25,32)(26,33)(27,34)(28,35)(29,36)(30,31)(49,67)(50,68)(51,69)(52,70)(53,71)(54,72)(55,76)(56,77)(57,78)(58,73)(59,74)(60,75)(61,82)(62,83)(63,84)(64,79)(65,80)(66,81)(85,103)(86,104)(87,105)(88,106)(89,107)(90,108)(91,109)(92,110)(93,111)(94,112)(95,113)(96,114)(97,115)(98,116)(99,117)(100,118)(101,119)(102,120)(121,139)(122,140)(123,141)(124,142)(125,143)(126,144), (1,23,26)(2,24,27)(3,19,28)(4,20,29)(5,21,30)(6,22,25)(7,16,141)(8,17,142)(9,18,143)(10,13,144)(11,14,139)(12,15,140)(31,43,39)(32,44,40)(33,45,41)(34,46,42)(35,47,37)(36,48,38)(49,61,57)(50,62,58)(51,63,59)(52,64,60)(53,65,55)(54,66,56)(67,82,78)(68,83,73)(69,84,74)(70,79,75)(71,80,76)(72,81,77)(85,100,91)(86,101,92)(87,102,93)(88,97,94)(89,98,95)(90,99,96)(103,118,109)(104,119,110)(105,120,111)(106,115,112)(107,116,113)(108,117,114)(121,136,127)(122,137,128)(123,138,129)(124,133,130)(125,134,131)(126,135,132), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,121,4,124)(2,126,5,123)(3,125,6,122)(7,34,10,31)(8,33,11,36)(9,32,12,35)(13,39,16,42)(14,38,17,41)(15,37,18,40)(19,131,22,128)(20,130,23,127)(21,129,24,132)(25,137,28,134)(26,136,29,133)(27,135,30,138)(43,141,46,144)(44,140,47,143)(45,139,48,142)(49,102,52,99)(50,101,53,98)(51,100,54,97)(55,95,58,92)(56,94,59,91)(57,93,60,96)(61,87,64,90)(62,86,65,89)(63,85,66,88)(67,120,70,117)(68,119,71,116)(69,118,72,115)(73,110,76,113)(74,109,77,112)(75,114,78,111)(79,108,82,105)(80,107,83,104)(81,106,84,103) );

G=PermutationGroup([[(1,66),(2,61),(3,62),(4,63),(5,64),(6,65),(7,117),(8,118),(9,119),(10,120),(11,115),(12,116),(13,111),(14,112),(15,113),(16,114),(17,109),(18,110),(19,58),(20,59),(21,60),(22,55),(23,56),(24,57),(25,53),(26,54),(27,49),(28,50),(29,51),(30,52),(31,70),(32,71),(33,72),(34,67),(35,68),(36,69),(37,73),(38,74),(39,75),(40,76),(41,77),(42,78),(43,79),(44,80),(45,81),(46,82),(47,83),(48,84),(85,124),(86,125),(87,126),(88,121),(89,122),(90,123),(91,130),(92,131),(93,132),(94,127),(95,128),(96,129),(97,136),(98,137),(99,138),(100,133),(101,134),(102,135),(103,142),(104,143),(105,144),(106,139),(107,140),(108,141)], [(1,45),(2,46),(3,47),(4,48),(5,43),(6,44),(7,138),(8,133),(9,134),(10,135),(11,136),(12,137),(13,132),(14,127),(15,128),(16,129),(17,130),(18,131),(19,37),(20,38),(21,39),(22,40),(23,41),(24,42),(25,32),(26,33),(27,34),(28,35),(29,36),(30,31),(49,67),(50,68),(51,69),(52,70),(53,71),(54,72),(55,76),(56,77),(57,78),(58,73),(59,74),(60,75),(61,82),(62,83),(63,84),(64,79),(65,80),(66,81),(85,103),(86,104),(87,105),(88,106),(89,107),(90,108),(91,109),(92,110),(93,111),(94,112),(95,113),(96,114),(97,115),(98,116),(99,117),(100,118),(101,119),(102,120),(121,139),(122,140),(123,141),(124,142),(125,143),(126,144)], [(1,23,26),(2,24,27),(3,19,28),(4,20,29),(5,21,30),(6,22,25),(7,16,141),(8,17,142),(9,18,143),(10,13,144),(11,14,139),(12,15,140),(31,43,39),(32,44,40),(33,45,41),(34,46,42),(35,47,37),(36,48,38),(49,61,57),(50,62,58),(51,63,59),(52,64,60),(53,65,55),(54,66,56),(67,82,78),(68,83,73),(69,84,74),(70,79,75),(71,80,76),(72,81,77),(85,100,91),(86,101,92),(87,102,93),(88,97,94),(89,98,95),(90,99,96),(103,118,109),(104,119,110),(105,120,111),(106,115,112),(107,116,113),(108,117,114),(121,136,127),(122,137,128),(123,138,129),(124,133,130),(125,134,131),(126,135,132)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,121,4,124),(2,126,5,123),(3,125,6,122),(7,34,10,31),(8,33,11,36),(9,32,12,35),(13,39,16,42),(14,38,17,41),(15,37,18,40),(19,131,22,128),(20,130,23,127),(21,129,24,132),(25,137,28,134),(26,136,29,133),(27,135,30,138),(43,141,46,144),(44,140,47,143),(45,139,48,142),(49,102,52,99),(50,101,53,98),(51,100,54,97),(55,95,58,92),(56,94,59,91),(57,93,60,96),(61,87,64,90),(62,86,65,89),(63,85,66,88),(67,120,70,117),(68,119,71,116),(69,118,72,115),(73,110,76,113),(74,109,77,112),(75,114,78,111),(79,108,82,105),(80,107,83,104),(81,106,84,103)]])

C22×C3⋊Dic3 is a maximal subgroup of
C62.6Q8  C62.15Q8  C623C8  C2×Dic32  C62.99C23  C62.57D4  C62.115C23  C627D4  C624Q8  C62.221C23  C626Q8  C62.225C23  C62.69D4  C62.72D4  C6214D4  C22×S3×Dic3  C22×C4×C3⋊S3  C624C12
C22×C3⋊Dic3 is a maximal quotient of
C62.247C23  D4.(C3⋊Dic3)

48 conjugacy classes

class 1 2A···2G3A3B3C3D4A···4H6A···6AB
order12···233334···46···6
size11···122229···92···2

48 irreducible representations

dim1111222
type++++-+
imageC1C2C2C4S3Dic3D6
kernelC22×C3⋊Dic3C2×C3⋊Dic3C2×C62C62C22×C6C2×C6C2×C6
# reps161841612

Matrix representation of C22×C3⋊Dic3 in GL5(𝔽13)

120000
012000
001200
000120
000012
,
10000
01000
00100
000120
000012
,
10000
01000
00100
00090
00053
,
10000
001200
01100
00040
000810
,
120000
04200
011900
00028
000111

G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,9,5,0,0,0,0,3],[1,0,0,0,0,0,0,1,0,0,0,12,1,0,0,0,0,0,4,8,0,0,0,0,10],[12,0,0,0,0,0,4,11,0,0,0,2,9,0,0,0,0,0,2,1,0,0,0,8,11] >;

C22×C3⋊Dic3 in GAP, Magma, Sage, TeX

C_2^2\times C_3\rtimes {\rm Dic}_3
% in TeX

G:=Group("C2^2xC3:Dic3");
// GroupNames label

G:=SmallGroup(144,176);
// by ID

G=gap.SmallGroup(144,176);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,48,964,3461]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^3=d^6=1,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽